Home

Wednesday, March 14, 2012

Menghitung IPK yang Akurat

hal ini dikhususkan bagi mahasiswa tehnik informatika Download di sini aja : http://www.2shared.com/file/3IiSYMrS/Book1.html.

Kasi Coment Bila Bermanfaat.

Sunday, March 11, 2012

Bioinformatika

Bioinformatika (bahasa Inggris: bioinformatics) adalah (ilmu yang mempelajari) penerapan teknik komputasional untuk mengelola dan menganalisis informasi biologis. Bidang ini mencakup penerapan metode-metode matematika, statistika, dan informatika untuk memecahkan masalah-masalah biologis, terutama dengan menggunakan sekuens DNA dan asam amino serta informasi yang berkaitan dengannya. Contoh topik utama bidang ini meliputi basis data untuk mengelola informasi biologis, penyejajaran sekuens (sequence alignment), prediksi struktur untuk meramalkan bentuk struktur protein maupun struktur sekunder RNA, analisis filogenetik, dan analisis ekspresi gen.

Sejarah

Istilah bioinformatics mulai dikemukakan pada pertengahan era 1980-an untuk mengacu pada penerapan komputer dalam biologi. Namun demikian, penerapan bidang-bidang dalam bioinformatika (seperti pembuatan basis data dan pengembangan algoritma untuk analisis sekuens biologis) sudah dilakukan sejak tahun 1960-an.
Kemajuan teknik biologi molekular dalam mengungkap sekuens biologis dari protein (sejak awal 1950-an) dan asam nukleat (sejak 1960-an) mengawali perkembangan basis data dan teknik analisis sekuens biologis. Basis data sekuens protein mulai dikembangkan pada tahun 1960-an di Amerika Serikat, sementara basis data sekuens DNA dikembangkan pada akhir 1970-an di Amerika Serikat dan Jerman (pada European Molecular Biology Laboratory, Laboratorium Biologi Molekular Eropa). Penemuan teknik sekuensing DNA yang lebih cepat pada pertengahan 1970-an menjadi landasan terjadinya ledakan jumlah sekuens DNA yang berhasil diungkapkan pada 1980-an dan 1990-an, menjadi salah satu pembuka jalan bagi proyek-proyek pengungkapan genom, meningkatkan kebutuhan akan pengelolaan dan analisis sekuens, dan pada akhirnya menyebabkan lahirnya bioinformatika.
Perkembangan Internet juga mendukung berkembangnya bioinformatika. Basis data bioinformatika yang terhubung melalui Internet memudahkan ilmuwan mengumpulkan hasil sekuensing ke dalam basis data tersebut maupun memperoleh sekuens biologis sebagai bahan analisis. Selain itu, penyebaran program-program aplikasi bioinformatika melalui Internet memudahkan ilmuwan mengakses program-program tersebut dan kemudian memudahkan pengembangannya.

Penerapan utama bioinformatika

Basis data sekuens biologis

Sesuai dengan jenis informasi biologis yang disimpannya, basis data sekuens biologis dapat berupa basis data primer untuk menyimpan sekuens primer asam nukleat maupun protein, basis data sekunder untuk menyimpan motif sekuens protein, dan basis data struktur untuk menyimpan data struktur protein maupun asam nukleat.
Basis data utama untuk sekuens asam nukleat saat ini adalah GenBank (Amerika Serikat), EMBL (Eropa), dan DDBJ(Inggris) (DNA Data Bank of Japan, Jepang). Ketiga basis data tersebut bekerja sama dan bertukar data secara harian untuk menjaga keluasan cakupan masing-masing basis data. Sumber utama data sekuens asam nukleat adalah submisi langsung dari periset individual, proyek sekuensing genom, dan pendaftaran paten. Selain berisi sekuens asam nukleat, entri dalam basis data sekuens asam nukleat umumnya mengandung informasi tentang jenis asam nukleat (DNA atau RNA), nama organisme sumber asam nukleat tersebut, dan pustaka yang berkaitan dengan sekuens asam nukleat tersebut.
Sementara itu, contoh beberapa basis data penting yang menyimpan sekuens primer protein adalah PIR (Protein Information Resource, Amerika Serikat), Swiss-Prot (Eropa), dan TrEMBL (Eropa). Ketiga basis data tersebut telah digabungkan dalam UniProt (yang didanai terutama oleh Amerika Serikat). Entri dalam UniProt mengandung informasi tentang sekuens protein, nama organisme sumber protein, pustaka yang berkaitan, dan komentar yang umumnya berisi penjelasan mengenai fungsi protein tersebut.
BLAST (Basic Local Alignment Search Tool) merupakan perkakas bioinformatika yang berkaitan erat dengan penggunaan basis data sekuens biologis. Penelusuran BLAST (BLAST search) pada basis data sekuens memungkinkan ilmuwan untuk mencari sekuens asam nukleat maupun protein yang mirip dengan sekuens tertentu yang dimilikinya. Hal ini berguna misalnya untuk menemukan gen sejenis pada beberapa organisme atau untuk memeriksa keabsahan hasil sekuensing maupun untuk memeriksa fungsi gen hasil sekuensing. Algoritma yang mendasari kerja BLAST adalah penyejajaran sekuens.
PDB (Protein Data Bank, Bank Data Protein) adalah basis data tunggal yang menyimpan model struktural tiga dimensi protein dan asam nukleat hasil penentuan eksperimental (dengan kristalografi sinar-X, spektroskopi NMR dan mikroskopi elektron). PDB menyimpan data struktur sebagai koordinat tiga dimensi yang menggambarkan posisi atom-atom dalam protein ataupun asam nukleat.

Penyejajaran sekuens

Penyejajaran sekuens (sequence alignment) adalah proses penyusunan/pengaturan dua atau lebih sekuens sehingga persamaan sekuens-sekuens tersebut tampak nyata. Hasil dari proses tersebut juga disebut sebagai sequence alignment atau alignment saja. Baris sekuens dalam suatu alignment diberi sisipan (umumnya dengan tanda "–") sedemikian rupa sehingga kolom-kolomnya memuat karakter yang identik atau sama di antara sekuens-sekuens tersebut. Berikut adalah contoh alignment DNA dari dua sekuens pendek DNA yang berbeda, "ccatcaac" dan "caatgggcaac" (tanda "|" menunjukkan kecocokan atau match di antara kedua sekuens).
 ccat---caac
 | ||   ||||
 caatgggcaac
Sequence alignment merupakan metode dasar dalam analisis sekuens. Metode ini digunakan untuk mempelajari evolusi sekuens-sekuens dari leluhur yang sama (common ancestor). Ketidakcocokan (mismatch) dalam alignment diasosiasikan dengan proses mutasi, sedangkan kesenjangan (gap, tanda "–") diasosiasikan dengan proses insersi atau delesi. Sequence alignment memberikan hipotesis atas proses evolusi yang terjadi dalam sekuens-sekuens tersebut. Misalnya, kedua sekuens dalam contoh alignment di atas bisa jadi berevolusi dari sekuens yang sama "ccatgggcaac". Dalam kaitannya dengan hal ini, alignment juga dapat menunjukkan posisi-posisi yang dipertahankan (conserved) selama evolusi dalam sekuens-sekuens protein, yang menunjukkan bahwa posisi-posisi tersebut bisa jadi penting bagi struktur atau fungsi protein tersebut.
Selain itu, sequence alignment juga digunakan untuk mencari sekuens yang mirip atau sama dalam basis data sekuens. BLAST adalah salah satu metode alignment yang sering digunakan dalam penelusuran basis data sekuens. BLAST menggunakan algoritma heuristik dalam penyusunan alignment.
Beberapa metode alignment lain yang merupakan pendahulu BLAST adalah metode "Needleman-Wunsch" dan "Smith-Waterman". Metode Needleman-Wunsch digunakan untuk menyusun alignment global di antara dua atau lebih sekuens, yaitu alignment atas keseluruhan panjang sekuens tersebut. Metode Smith-Waterman menghasilkan alignment lokal, yaitu alignment atas bagian-bagian dalam sekuens. Kedua metode tersebut menerapkan pemrograman dinamik (dynamic programming) dan hanya efektif untuk alignment dua sekuens (pairwise alignment)
Clustal adalah program bioinformatika untuk alignment multipel (multiple alignment), yaitu alignment beberapa sekuens sekaligus. Dua varian utama Clustal adalah ClustalW dan ClustalX.
Metode lain yang dapat diterapkan untuk alignment sekuens adalah metode yang berhubungan dengan Hidden Markov Model ("Model Markov Tersembunyi", HMM). HMM merupakan model statistika yang mulanya digunakan dalam ilmu komputer untuk mengenali pembicaraan manusia (speech recognition). Selain digunakan untuk alignment, HMM juga digunakan dalam metode-metode analisis sekuens lainnya, seperti prediksi daerah pengkode protein dalam genom dan prediksi struktur sekunder protein.

Prediksi struktur protein

Model protein hemaglutinin dari virus influensa
Secara kimia/fisika, bentuk struktur protein diungkap dengan kristalografi sinar-X ataupun spektroskopi NMR, namun kedua metode tersebut sangat memakan waktu dan relatif mahal. Sementara itu, metode sekuensing protein relatif lebih mudah mengungkapkan sekuens asam amino protein. Prediksi struktur protein berusaha meramalkan struktur tiga dimensi protein berdasarkan sekuens asam aminonya (dengan kata lain, meramalkan struktur tersier dan struktur sekunder berdasarkan struktur primer protein). Secara umum, metode prediksi struktur protein yang ada saat ini dapat dikategorikan ke dalam dua kelompok, yaitu metode pemodelan protein komparatif dan metode pemodelan de novo.
Pemodelan protein komparatif (comparative protein modelling) meramalkan struktur suatu protein berdasarkan struktur protein lain yang sudah diketahui. Salah satu penerapan metode ini adalah pemodelan homologi (homology modelling), yaitu prediksi struktur tersier protein berdasarkan kesamaan struktur primer protein. Pemodelan homologi didasarkan pada teori bahwa dua protein yang homolog memiliki struktur yang sangat mirip satu sama lain. Pada metode ini, struktur suatu protein (disebut protein target) ditentukan berdasarkan struktur protein lain (protein templat) yang sudah diketahui dan memiliki kemiripan sekuens dengan protein target tersebut. Selain itu, penerapan lain pemodelan komparatif adalah protein threading yang didasarkan pada kemiripan struktur tanpa kemiripan sekuens primer. Latar belakang protein threading adalah bahwa struktur protein lebih dikonservasi daripada sekuens protein selama evolusi; daerah-daerah yang penting bagi fungsi protein dipertahankan strukturnya. Pada pendekatan ini, struktur yang paling kompatibel untuk suatu sekuens asam amino dipilih dari semua jenis struktur tiga dimensi protein yang ada. Metode-metode yang tergolong dalam protein threading berusaha menentukan tingkat kompatibilitas tersebut.
Dalam pendekatan de novo atau ab initio, struktur protein ditentukan dari sekuens primernya tanpa membandingkan dengan struktur protein lain. Terdapat banyak kemungkinan dalam pendekatan ini, misalnya dengan menirukan proses pelipatan (folding) protein dari sekuens primernya menjadi struktur tersiernya (misalnya dengan simulasi dinamika molekular), atau dengan optimisasi global fungsi energi protein. Prosedur-prosedur ini cenderung membutuhkan proses komputasi yang intens, sehingga saat ini hanya digunakan dalam menentukan struktur protein-protein kecil. Beberapa usaha telah dilakukan untuk mengatasi kekurangan sumber daya komputasi tersebut, misalnya dengan superkomputer (misalnya superkomputer Blue Gene dari IBM) atau komputasi terdistribusi (distributed computing, misalnya proyek Folding@home) maupun komputasi grid.

Analisis ekspresi gen

Analisis klastering ekspresi gen pada kanker payudara
Ekspresi gen dapat ditentukan dengan mengukur kadar mRNA dengan berbagai macam teknik (misalnya dengan microarray ataupun Serial Analysis of Gene Expression ["Analisis Serial Ekspresi Gen", SAGE]). Teknik-teknik tersebut umumnya diterapkan pada analisis ekspresi gen skala besar yang mengukur ekspresi banyak gen (bahkan genom) dan menghasilkan data skala besar. Metode-metode penggalian data (data mining) diterapkan pada data tersebut untuk memperoleh pola-pola informatif. Sebagai contoh, metode-metode komparasi digunakan untuk membandingkan ekspresi di antara gen-gen, sementara metode-metode klastering (clustering) digunakan untuk mempartisi data tersebut berdasarkan kesamaan ekspresi gen.

Bioinformatika di Indonesia

Saat ini mata ajaran bioinformatika maupun mata ajaran dengan muatan bioinformatika sudah diajarkan di beberapa perguruan tinggi di Indonesia. Sekolah Ilmu dan Teknologi Hayati ITB menawarkan mata kuliah "Pengantar Bioinformatika" untuk program Sarjana dan mata kuliah "Bioinformatika" untuk program Pascasarjana. Fakultas Teknobiologi Universitas Atma Jaya, Jakarta menawarkan mata kuliah "Pengantar Bioinformatika". Mata kuliah "Bioinformatika" diajarkan pada Program Pascasarjana Kimia Fakultas MIPA Universitas Indonesia (UI), Jakarta. Mata kuliah "Proteomik dan Bioinformatika" termasuk dalam kurikulum program S3 bioteknologi Universitas Gadjah Mada (UGM), Yogyakarta. Materi bioinformatika termasuk di dalam silabus beberapa mata kuliah untuk program sarjana maupun pascasarjana biokimia,biologi, dan bioteknologi pada Institut Pertanian Bogor (IPB). Selain itu, riset-riset yang mengarah pada bioinformatika juga telah dilaksanakan oleh mahasiswa program S1 Ilmu Komputer maupun program pascasarjana biologi serta bioteknologi IPB.
Riset bioinformatika protein dilaksanakan sebagai bagian dari aktivitas riset rekayasa protein pada Laboratorium Rekayasa Protein, Pusat Penelitian Bioteknologi Lembaga Ilmu Pengetahuan Indonesia (LIPI), Cibinong, Bogor. Lembaga Biologi Molekul Eijkman, Jakarta, secara khusus memiliki laboratorium bioinformatika sebagai fasilitas penunjang kegiatan risetnya. Selain itu, basis data sekuens DNA mikroorganisme asli Indonesia sedang dikembangkan di UI.

Sumber : http://id.wikipedia.org/wiki/Bioinformatika

Komputasi Modern dan Paralel Processing

Pemrosesan paralel (parallel processing) adalah penggunakan lebih dari satu CPU untuk menjalankan sebuah program secara simultan. Idealnya, parallel processing membuat program berjalan lebih cepat karena semakin banyak CPU yang digunakan. Tetapi dalam praktek, seringkali sulit membagi program sehingga dapat dieksekusi oleh CPU yang berbea-beda tanpa berkaitan di antaranya.
Komputasi paralel adalah salah satu teknik melakukan komputasi secara bersamaan dengan memanfaatkan beberapa komputer secara bersamaan. Biasanyadiperlukan saat kapasitas yang iperlukan sangat besar, baik karena harus mengolah data dalam jumlah besar ataupun karena tuntutan proses komputasi yang banyak. Untuk melakukan aneka jenis komputasi paralel ini diperlukan infrastruktur mesin paralel yang terdiri dari banyak komputer yang dihubungkan dengan jaringan dan mampu bekerja secara paralel untuk menyelesaikan satu masalah. Untuk itu diperlukan aneka perangkat lunak pendukung yang biasa disebut sebagai middleware yang berperan untuk mengatur distribusi pekerjaan antar node dalam satu mesin paralel. Selanjutnya pemakai harus membuat pemrograman paralel untuk merealisasikan komputasi Pemrograman paralel adalah teknik pemrograman komputer yang memungkinkan eksekusi perintah/operasi secara bersamaan baik dalam komputer dengan satu (prosesor tunggal) ataupun banyak (prosesor ganda dengan mesin paralel) CPU. Tujuan utama dari pemrograman paralel adalah untuk meningkatkan performa komputasi. Semakin banyak hal yang bisa dilakukan secara bersamaan (dalam waktu yang sama), semakin banyak pekerjaan yang bisa diselesaikan.

Kesimpulan :
Banyak perkembangan-perkembangan baru dalam arsitektur komputer yang didasarkan pada konsep pemrosesan paralel. Pemrosesan paralel dalam sebuah komputer dapat didefinisikan sebagai pelaksanaan instruksi-instruksi secara bersamaan waktunya. Hal ini dapat menyebabkan pelaksanaan kejadian-kejadian dalam interval waktu yang sama, dalam waktu yang bersamaan atau dalam rentang waktu yang saling tumpang tindih.
Sekalipun didukung oleh teknologi prosesor yang berkembang sangat pesat, komputer sekuensial tetap akan mengalami keterbatasan dalam hal kecepatan pemrosesannya. Hal ini menyebabkan lahirnya konsep keparalelan (parallelism) untuk menangani masalah dan aplikasi yang membutuhkan kecepatan pemrosesan yang sangat tinggi, seperti misalnya prakiraan cuaca, simulasi pada reaksi kimia, perhitungan aerodinamika dan lain-lain.
Konsep keparalelan itu sendiri dapat ditinjau dari aspek design mesin paralel, perkembangan bahasa pemrograman paralel atau dari aspek pembangunan dan analisis algoritma paralel. Algoritma paralel itu sendiri lebih banyak difokuskan kepada algoritma untuk menyelesaikan masalah numerik, karena masalah numerik merupakan salah satu masalah yang memerlukan kecepatan komputasi yang sangat tinggi.

sumber :

Komputasi Modern

Komputasi modern merupakan sebuah istilah yang digunakan untuk mengartikan perkembangan dari suatu sistem algoritma untuk memecahkan suatu masalah dari data input dengan menggunakan suatu algoritma. Komputasi merupakan suatu sub-bidang dari ilmu komputer dan matematika. Selama ribuan tahun, perhitungan dan komputasi menggunakan pena dan kertas, atau kapur dan batu tulis, atau dikerjakan secara mental dan kadang-kadang menggunakan tabel. Karena perkembangan jaman makan komputasi sekarang menggunakan komputer. Komputasi yang menggunakan komputer inilah maka disebut dengan Komputasi Modern. Komputasi modern digunakan untuk memecahkan masalah yang ada, perhitungan komputasi modern yaitu seperti :
  • Akurasi (bit, floating point)
  • Kecepatan (dalam satuanHz)
  • Problem volume besar (paralel)
  • Modeling (NN dan GA)
  • Kompleksitas (menggunakan Teori Bog O)
DEFINISI KOMPUTASI MODERN
Komputasi modern adalah sebuah konsep sistem yang menerima intruksi-intruksi dan menyimpannya dalam sebuah memory, memory disini bisa juga dari memory komputer. Oleh karena pada saat ini kita melakukan komputasi menggunakan komputer maka bisa dibilang komputer merupakan sebuah komputasi modern.
JENIS-JENIS KOMPUTASI MODERN
Sebelumnya jenis -jenis komputasi modern terbagi tiga macam, yaitu komputasi mobile (bergerak), komputasi grid, dan komputasi cloud (awan). Penjelasan lebih lanjut dari jenis-jenis komputasi modern sebagai berikut :
1. Mobile computing
Mobile computing atau komputasi bergerak memiliki beberapa penjelasan, salah satunya komputasi bergerak merupakan kemajuan teknologi komputer sehingga dapat berkomunikasi menggunakan jaringan tanpa menggunakan kabel dan mudah dibawa atau berpindah tempat, tetapi berbeda dengan komputasi nirkabel.
Dan berdasarkan penjelasan tersebut, untuk kemajuan teknologi ke arah yang lebih dinamis membutuhkan perubahan dari sisi manusia maupun alat. Dan dapat dilihat contoh dari perangkat komputasi bergerak seperti GPS, juga tipe dari komputasi bergerak seperti smart phone, dan lain sebagainya.
2. Grid computing
Komputasi grid menggunakan komputer yang terpisah oleh geografis, didistibusikan dan terhubung oleh jaringan untuk menyelasaikan masalah komputasi skala besar.
Ada beberapa daftar yang dapat dugunakan untuk mengenali sistem komputasi grid, adalah :
  • Sistem untuk koordinat sumber daya komputasi tidak dibawah kendali pusat.
  • Sistem menggunakan standard dan protocol yang terbuka.
  • Sistem mencoba mencapai kualitas pelayanan yang canggih, yang lebih baik diatas kualitas komponen individu pelayanan komputasi grid.
3. Cloud computing
Komputasi cloud merupakan gaya komputasi yang terukur dinamis dan sumber daya virtual yang sering menyediakan layanan melalui internet.
Komputasi cloud menggambarkan pelengkap baru, konsumsi dan layanan IT berbasis model dalam internet, dan biasanya melibatkan ketentuan dari keterukuran dinamis dan sumber daya virtual yang sering menyediakan layanan melalui internet.
DAMPAK ADANYA KOMPUTASI MODERN
Dampak dari adanya komputasi modern adalah dapat membantu manusia untuk menyelesaikan masalah-masalah yang kompleks dengan menggunakan komputer. Salah satu contohnya adalah biometric. Biometric berasal dari kata Bio dan Metric. Kata bio diambil dari bahasa yunani kuno yang berarti Hidup sedangkan Metric juga berasal dari bahasa yunani kuno yang berarti ukuran, jadi jika disimpulkan biometric berarti pengukuran hidup.
Tapi secara garis besar biometric merupakan pengukuran dari statistic analisa data biologi yang mengacu pada teknologi untuk menganalisa karakteristik suatu tubuh (individu). Dari penjelasan tersebut sudah jelas bahwa Biometric menggambarkan pendeteksian dan pengklasifikasian dari atribut fisik.



Salah satu tokoh yang sangat mempengaruhi perkembangan komputasi modern adalah John von Neumann (1903-1957), Beliau adalah ilmuan yang meletakkan dasar-dasar komputer modern. Von Neumann telah menjadi ilmuwan besar abad 21. Von Neumann memberikan berbagai sumbangsih dalam bidang matematika, teori kuantum, game theory, fisika nuklir, dan ilmu komputer yang di salurkan melalui karya-karyanya . Beliau juga merupakan salah satu ilmuwan yang terkait dalam pembuatan bom atom di Los Alamos pada Perang Dunia II lalu. Kegeniusannya dalam matematika telah terlihat semenjak kecil dengan mampu melakukan pembagian bilangan delapan digit (angka) di dalam kepalanya.

Von Neumann dilahirkan di Budapest, ibu kota Hungaria, pada 28 Desember 1903 dengan nama Neumann Janos. Dia adalah anak pertama dari pasangan Neumann Miksa dan Kann Margit. Di sana, nama keluarga diletakkan di depan nama asli. Sehingga dalam bahasa Inggris, nama orang tuanya menjadi Max Neumann dan Margaret Kann. Max Neumann memperoleh gelar dan namanya berubah menjadi Von Neumann. Max Neumann adalah seorang Yahudi Hungaria yang bergelar doktor dalam ilmu hukum. Dia juga seorang pengacara untuk sebuah bank. Pada tahun 1903, Budapest terkenal sebagai tempat lahirnya para manusia genius dari bidang sains, penulis, seniman dan musisi.

Pada tahun 1921, Von Neumann disekolahkan ayahnya ke Universitas Berlin untuk menjadi insinyur teknik kimia. Berselang dua tahun kemudian ia melanjutkan pendidikan ke Zurich. Sebenarnya Von Neumann kurang tertarik dengan bidang kimia atau bidang engineering, namun ayahnya mendorong dia untuk mempelajari kimia. Pada waktu itu teknik kimia sedang populer dan menjanjikan karier yang cerah bagi para insinyurnya. Oleh karena itu, ayahnya mengharuskan Von Neumann mengikuti pendidikan kimia tanpa gelar selama dua tahun di Berlin, lalu melanjutkan di Eidgennossische Technische Hochschule (ETH) Zurich pada bidang yang sama. Ujian masuk ETH terkenal sulit, bahkan Albert Einstein pernah gagal dalam ujian masuk di tahun 1895 dan berhasil lulus pada ujian tahun berikutnya.

Keinginan Von Neumann untuk mempelajari matematika dilakukannya pada musim panas setelah studinya di Berlin dan sebelum masuk ETH Zurich. Dia menjadi mahasiswa program doktor pada Universitas Budapest. Tesis doktornya bertemakan aksiomasisai teori himpunan (set theory) yang dikembangkan George Cantor. Pada masa itu, set theory merupakan salah satu topik 'menantang' di dunia matematika.

Di tahun 1926 pada umur 22 tahun, Von Neuman lulus dengan dua gelar yaitu gelar S1 pada bidang teknik kimia dari ETH dan gelar doktor (Ph.D) pada bidang matematika dari Universitas Budapest.

Von Neumann sangat tertarik pada hidrodinamika dan kesulitan penyelesaian persamaan diferensial parsial nonlinier yang digunakan, Von Neumann kemudian beralih dalam bidang komputasi. Von Neumann menjadi seorang konsultan pada pengembangan komputer ENIAC, dia merancang konsep arsitektur komputer yang masih dipakai sampai sekarang. Arsitektur Von Nuemann adalah seperangkat komputer dengan program yang tersimpan (program dan data disimpan pada memori) dengan pengendali pusat, I/O, dan memori.

Berikut ini beberapa contoh komputasi modern sampai dengan lahirnya ENIAC :

Konrad Zuse’s electromechanical “Z mesin”.Z3 (1941) sebuah mesin pertama menampilkan biner aritmatika, termasuk aritmatika floating point dan ukuran programmability. Pada tahun 1998, Z3 operasional pertama di dunia komputer itu di anggap sebagai Turing lengkap.
Berikutnya Non-programmable Atanasoff-Berry Computer yang di temukan pada tahun 1941 alat ini menggunakan tabung hampa berdasarkan perhitungan, angka biner, dan regeneratif memori kapasitor.Penggunaan memori regeneratif diperbolehkan untuk menjadi jauh lebih seragam (berukuran meja besar atau meja kerja).
Selanjutnya komputer Colossus ditemukan pada tahun 1943, berkemampuan untuk membatasi kemampuan program pada alat ini menunjukkan bahwa perangkat menggunakan ribuan tabung dapat digunakan lebih baik dan elektronik reprogrammable.Komputer ini digunakan untuk memecahkan kode perang Jerman.
The Harvard Mark I ditemukan pada 1944, mempunyai skala besar, merupakan komputer elektromekanis dengan programmability terbatas.
Lalu lahirlah US Army’s Ballistic Research Laboratory ENIAC ditemukan pada tahun 1946, komputer ini digunakan unutk menghitung desimal aritmatika dan biasanya disebut sebagai tujuan umum pertama komputer elektronik (ENIAC merupaka generasi yang sudah sangat berkembang di zamannya sejak komputer pertama Konrad Zuse ’s Z3 yang ditemukan padatahun 1941).